Neutral Carrier-Type Silver Ion-Selective Electrode
Based on Lipophilic Monothiacrown Ether

Masatoshi OUE, * Keiichi KIMURA, † Kazuhiro AKAMA, † Minoru TANAKA, † and Toshiyuki SHONO †

Department of Chemical Engineering, Nara National College of Technology, Yata, Yamato-Kōriyama, Nara 639-11 †Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565

Dodecyl-16-crown-5, which contains one sulfur and four oxygen atoms, was synthesized and tested for its usefulness as a neutral carrier for Ag^+ -selective electrodes. The resulting ion-selective electrodes exhibited Nernstian response to Ag^+ in a wide activity range. The ion selectivities against other heavy metal ions and alkali and alkaline-earth metal ions were quite excellent.

Crown ethers, which have good affinities to alkali and alkaline-earth metal ions, have been utilized as neutral carriers in metal ion-selective electrodes. Especially in the electrodes based on bis(crown ether) derivatives, high selectivities for alkali metal ions have been realized. However, there are very few neutral carrier-type Ag^+ -selective electrodes. Also, in previous Ag^+ electrodes based on dithiacrown ether derivatives, serious interference by Fe^{3+} and Hg^{2+} (selective coefficients of about 1) was observed. We report here a high-performance Ag^+ -selective electrode using a lipophilic monothiacrown ether.

Monothiacrown ether 1 was synthesized from bis(2-hydroxyethyl)sulfide and 5-dodecyl-3,7- dioxanonane-1,9-diol ditosylate as shown in the scheme. 5,6) The compound was purified by silica gel column chromatography (Ethyl acetate/hexane = 1/10) to yield a colorless oil(25%): Found:C,66.31;H,11.12%; M⁺,418. Calcd for $C_{2,3}H_{4,6}O_{4}S$: C,65.99;H,11.08%; M⁺,418.

The electrode membranes were prepared by a previously-reported method, 1) and contained PVC(27.6 wt%), the neutral carrier(2.8 wt%), DOP(dioctyl phthalate)(69.1 wt%), and dipicrylamine sodium salt(0.5 wt%). After injecting 1 M(1 M=1 mol·dm⁻³) KNO₃ aqueous solution as the internal filling solution, the electrodes were conditioned by soaking them in 10^{-3} M AgNO₃ for 3 days. The electrochemical cell

410 Chemistry Letters, 1988

for the e.m.f. measurements was as follows: Ag-AgCl/4 M KCl/0.1 M NH $_4$ NO $_3$ / sample solution/membrane/1 M KNO $_3$ /AgCl-Ag

A typical e.m.f. response of the 1-based ion-selective electrode to Ag^+ is shown in Fig. 1. An ideal Nernstian slope(59 mV/decade) for Ag^+ was attained in the Ag^+ activity range of 10^{-5} — 10^{-2} M. The response time of the 1-based Ag^+ -selective electrode was within 30 s. The electrode properties were hardly changed for at least 3 months. The high selectivity and durability of the electrode might be attributed partly to the high lipophilicity of the thiacrown ether. Thus, the Ag^+ -selective electrode based on 1 is quite promising for practical applications. Figure 2 gives the Ag^+ selectivities of the electrode against other heavy metal ions, alkali and alkaline-earth metal ions, and NH_4^+ . The interference by the metal ions except Hg^{2+} is negligible. Even the Ag^+ selectivity against Hg^{2+} ($\mathrm{k}_{\mathrm{AgHg}}^{\mathrm{Pot}}$ = 1.6 x 10^{-2}) was drastically improved as compared to that ($\mathrm{k}_{\mathrm{AgHg}}^{\mathrm{Pot}}$ = 0.77) of the previous thiacrown ether-based electrodes. Furthermore, the 1-based Ag^+ -selective electrode is definitely superior to popular $\mathrm{Ag}_2\mathrm{S}$ -based Ag^+ electrodes in the Hg^{2+} interference, since coexistence of Hg^{2+} in measuring solutions never be allowed in the $\mathrm{Ag}_2\mathrm{S}$ -based electrode system. Further study is currently under way.

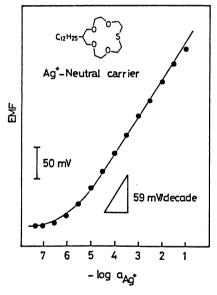


Fig. 1. Calibration plots for Ag⁺-selective electrode based on 1. (left)

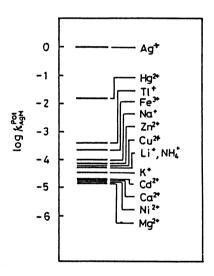


Fig. 2. Selectivity coefficients log k AgM . (Determined by FIM)

References

- 1) K. Kimura, T. Maeda, H. Tamura, and T. Shono, J. Electroanal. Chem. Interfacial Electrochem., 95, 91(1979).
- 2) T. Shono, M. Okahara, I. Ikeda, K. Kimura, and H. Tamura, J. Electroanal. Chem. Interfacial Electrochem., 132, 99(1982).
- 3) S. Kitazawa, K. Kimura, H. Yano, and T. Shono, J. Am. Chem. Soc., <u>106</u>, 6978(1984).
- 4) M. T. Lai, and J. S. Shih, Analyst(London), 111, 891(1986).
- 5) D. Ammann, R. Bissig, M. Guggi, E. Pretsch, and W. Simon, Helv. Chim. Acta, $\underline{58}$, 1535(1975).
- 6) H. Sakamoto, K. Kimura, Y. Koseki, M. Matsuo, and T. Shono, J. Org. Chem., <u>51</u>, 4974(1986).

(Received November 12, 1987)